在拆裝、搬運、庫存時,須避免碰撞和堆壓;不應使用車輛慣性啟動發動機,避免沖擊;避免猛抬離合器踏板,換檔應平順;盡量做到車輛制動時,變速器處于空檔或使離合器處于分離狀態,防止傳動過載。鍛造經常檢查中間支撐軸承、十字軸軸承、滑動花鍵的密封狀況,及時更換失效的油封。經常注入潤滑脂,為了使萬向節各個軸承均能得到充分潤滑,必須使潤滑油從個軸承的油封處擠出為止。推薦鍛造潤滑中間支撐軸承,應從前軸承蓋的通氣孔擠出為止。經常檢查緊固傳動軸及支承各部件的連接螺栓;經常檢查中間支撐軸承的徑、軸向間隙、十字軸軸向間隙、十字軸與軸承、軸承與萬向節叉孔的配合間隙、滑動花鍵副的周向間隙。檢傳動軸是否彎曲、凹癟、平衡片是否脫落;檢查發動機、后橋(驅動橋)及中間支撐橫梁的定位是否符合標準。
傳動軸萬向節故障主要是軸頸和軸承磨損及各軸頸出現彎曲變形,造成其十字軸各軸中心線不在同一平面上,或相鄰的兩軸中心線不垂直。鍛造由于萬向節十字軸軸頸和軸承磨損間隙過大,十字軸在運行中產生晃動,使傳動軸中心線偏離其旋轉中心線,使傳動軸產生振抖現象和運行中傳動軸發出異常響聲的現象。推薦鍛造磨損主要是缺少潤滑引起的。萬向節十字軸軸頸和軸承的磨損,從使用情況來看不應超過0.02~0.13mm,一般保持在0.01mm左右。如果超過0.13mm,就產生傳動軸振抖和發響的現象。如果十字軸軸頸磨損出槽,槽又很深應進行修理或更換。如果采用堆焊和鑲套修理,還要進行熱處理和磨削加工。加工后要求各軸頸的不圓度在0.01mm,錐度不能大(20mm長度上不能大于0.01mm)。要檢查相鄰兩軸線的垂直度,一定要保證垂直,加工修理后各軸頸的軸線應在同一平面內。
鍛造在懸鏈上移動時溫度下降到 300~400℃,在此溫度下自動裝入機組的正火爐,在爐內加熱到 950℃,且在此溫度下保溫至均勻。加熱和保溫共 2h。保溫完畢后正火爐的拉出機將鉤轉送到冷卻室。冷卻后,再轉送到回火爐。加熱至 660℃,并在此溫度下回火 3~3。5h。而后回火爐的拉出機拉出曲軸,再掛到懸鏈上,位置時轉送到拋丸室懸鏈上送去拋丸。所謂利用模鍛件部分余熱處理,是待環形鍛件冷卻到 Ar1 轉變點以下的溫度(500℃左右),奧氏體已發生轉變。開封鍛造隨將環形鍛件入爐加熱到 AC3以上溫度進行正火(或正火加高溫回火)、調質和等溫退火的熱處理方法。
造成工程機械液壓系統的泄漏的因素是多方面綜合影響的結果,以現有的技術和材料,要想從本質上消除液壓系統的泄漏是很難做到的。鍛造只有從以上影響液壓系統泄漏因素出發,采取合理的措施盡量減少液壓系統泄漏。在設計和加工環節中要充分考慮影響泄漏的重要因素密封溝槽的設計和加工。開封鍛造另外,密封件的選擇也是非常重要的,如果不在一開始全面考慮泄漏的影響因素,將會給以后的生產中帶來無法估量的損失。選擇正確的裝配和修理方法,借鑒以往的經驗。如,在密封圈的裝配中盡量采用專用工具、并且在密封圈上涂一些潤滑脂。在液壓油的污染控制上,要從污染的源頭入手,加強污染源的控制,還要采取有效的過濾措施和定期的油液質量檢查。為有效的切斷外界因素(水、塵埃、顆粒等)對液壓油缸的污染,可加一些防護措施等。總之,泄漏的防治要全面入手,綜合考慮才能做到行之有效。
精密模鍛是在普通模具基礎上發展起來的一種少、無切削加工新工藝。它是將零件上一些過去需要切削加工才能達到精度要求的部分直接鍛出或僅需留少量磨景。開封鍛造因此,采用精密模鍛工藝需對模鍛的有關環節提出更嚴格的技術要求,例如:對毛坯的下料質量及表面質量的控制;預制坯的合理設計;毛坯的少、無氧化加熱;加熱規范及冷卻規范的控制;模具制造和使用精度的控制;合適的潤滑及冷卻條件的選取等。鍛造精密模鍛具有節約金屬和減少切削加工工時的優點,但是,由于強化了模鍛的有關環節而會使部分成本提高。所以,對具體產品是否選精密模鍛工藝生產應根據生產成品零件的綜合經濟指標以及零件結構和性能的特殊要求進行綜合考慮。