鍛壓是機器制造中重要的工序,一些受力大的重要零件大多采用鍛造的方法來制作,如大型發電機主軸。船舶用的曲軸、飛機的主梁等,所以這些也被看作是典型的鍛壓件。配套油缸缸底鍛造鍛壓件鍛造過程中,還會對鍛件進行非常規的熱處理工藝,目的是為了克服鍛件內外組織轉變不同時性,減少了熱應力和組織應力,有效的保障了鍛件的性能和使用壽命。鎮江配套油缸缸底鍛造經過鍛壓加工制成的鍛壓件有較強的適應性,不僅可以制造形狀簡單的工作,還可以制造形狀相對比較復雜的零件,而且整個制作過程中不需要或只需要進行少量的切削加工工藝。尤其是一些脆性的雜質被粉碎、而塑性的雜質,會隨著鍛壓件工藝的開展,金屬的變形而拉長,成為纖維組織,使得材料的韌性大大加強。所以,經過鍛壓后,材料的內部組織變得很堅實,明顯提高了機械性能,這也是鍛壓件性能優勢的主要原因。
鑄件的特點是容易獲得其他方法不易獲得的形狀復雜的工件;鑄件成本低;可以采用特殊工藝獲得精密鑄件,其表面不經加工即有理想的光潔度;鑄件成形簡單,比鍛造價格便宜;但鑄件內容易出現缺陷及非致密區,在強腐蝕及高壓場合國內的技術一般不能保證鑄件的質量。配套油缸缸底鍛造鑄件內部的一些缺點是,凝固過程中,在不均勻收縮造成的應力集中和接近熔點溫度下金屬的低強度的綜合作用下,出現的清晰裂縫和熱撕裂。較低的鑄造溫度會形成冷疤,熔化金屬出現的沙粒或爐渣的累積會導致污點。推薦配套油缸缸底鍛造較低級別的鑄造作業也可能造成其它缺陷。鑄件的改進要滿足質量的要求就要靠缺陷部位的磨削,焊補,熱處理和重復測試和檢驗。即使在這種情祝下可能會顯示需要通過重焊和機加工的細線裂縫。
應使鑄件全部或大部分位于同一砂型內,或使主要加工面與加工的基準面處于同一砂型中,以防錯型,保證鑄件尺寸精度,便于造型和合型操作。配套油缸缸底鍛造若鑄件的加工面很多,又不可能都與基準面放在分型面的同一側時,則應使加工基準面與大部分加工面處在分型面的同一側。應盡量減少分型面的數量,盡量只有一個分型面。這樣可簡化操作過程,提高鑄件精度 (因多一個分型面,鑄型就增加一些誤差)。鎮江配套油缸缸底鍛造應盡量使型腔和主要型芯處于下型,以便于造型,下芯,合型及檢驗型腔尺寸。但下型的型腔也不宜過深,并力求避免使用吊芯和大的吊砂。應盡量選用平直面作分型面,少用曲面,以簡化制模和造型工藝。應盡量減少型芯和活塊的數量,以簡化制模、造型、合型等工序。
尺寸精度:軸頸是軸類零件的主要表面,它影響軸的回轉精度及工作狀態。軸頸的直徑精度根據其使用要求通常為IT6~9,精密軸頸可達IT5。配套油缸缸底鍛造幾何形狀精度:軸頸的幾何形狀精度(圓度、圓柱度),一般應限制在直徑公差點范圍內。對幾何形狀精度要求較高時,可在零件圖上另行規定其允許的公差。推薦配套油缸缸底鍛造位置精度:主要是指裝配傳動件的配合軸頸相對于裝配軸承的支承軸頸的同軸度,通常是用配合軸頸對支承軸頸的徑向圓跳動來表示的;根據使用要求,規定高精度軸為0.001~0.005mm,而一般精度軸為0.01~0.03mm。此外還有內外圓柱面的同軸度和軸向定位端面與軸心線的垂直度要求等。表面粗糙度:根據零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通機床主軸支承軸頸的表面粗糙度為Ra0.16~0.63um,配合軸頸的表面粗糙度為Ra0.63~2.5um,隨著機器運轉速度的變大和精密程度的提高,軸類零件表面粗糙度值要求也將越來越小。
泄漏是目前液壓機械普遍存在的故障現象,尤其是在工程機械液壓系統中更為嚴重,主要是由于液體在液壓元件和管路中流動時產生壓力差及各元件存在間隙等引起泄漏。配套油缸缸底鍛造另外,惡劣工況條件也會對工程機械的密封產生一定的影響。液壓系統一旦發生泄漏,將會引起系統壓力建立不起來,液壓油泄漏還會造成環境污染,影響生產甚至產生無法估計的嚴重后果。鎮江配套油缸缸底鍛造工程機械液壓系統的泄漏主要有兩種,固定密封處泄漏和運動密封處泄漏,固定密封處泄漏的部位主要包括缸底、各管接頭的連接處等,運動密封處主要包括油缸活塞桿部位、多路閥閥桿等部位。從油液的泄漏上也可分為外泄漏和內泄漏,外泄漏主要是指液壓油從系統泄漏到環境中,內泄漏是指由于高低壓側的壓力差的存在以及密封件失效等原因,使液壓油在系統內部由高壓側流向低壓側。
工程機械都離不開油缸,油缸又離不開密封件。鎮江推薦配套油缸缸底鍛造常見的密封件就是密封圈,也叫油封,起到隔絕油液的作用,防止油液溢出或通過。常見的用于液壓油缸的密封圈又以下這些類型:防塵圈、活塞桿密封圈、緩沖密封圈、導向支撐環、端蓋密封圈和活塞密封圈。配套油缸缸底鍛造防塵圈安裝在液壓缸端蓋的外側,用于防止外部污染物進入油缸,根據安裝方式又可分為卡入式和壓入式。卡入式防塵圈較為常見,顧名思義,防塵圈卡在端蓋內壁的凹槽里,用于不那么苛刻的環境條件下。卡入式防塵圈的材料通常為聚氨酯,結構形式有多種變體,如H和K型截面為雙唇結構,但萬變不離其宗。