鍛造是金屬被施加壓力,通過塑性變形塑造要求的形狀或壓縮力的物件。這種力量典型的通過使用鐵錘或壓力來實現。鍛件過程建造了顆粒結構,并改進了金屬的物理屬性。在部件的現實使用中,一個正確的設計能使顆粒流在主壓力的方向。鍛件需要每片都是一樣的,沒有多孔性、多余空間、內含物或其他的瑕疵。寧波鍛造加工需要每片都是一樣的,沒有多孔性、多余空間、內含物或其他的瑕疵。這種方法生產的元件,強度與重量比有一個高的比率。這些元件通常被用在飛機結構中。
船用鍛件分為三大類,主機鍛件、軸系鍛件和舵系鍛件。軸系鍛件有推力軸、中間軸艉軸等。舵系鍛件有舵桿、舵柱、舵銷等。供應鍛造鍛件在兵器工業中占有重要的地位。火炮中的炮管、炮口制退器和炮尾,步兵武器中的具有膛線的槍管及三棱刺刀、火箭和潛艇深水炸彈發射裝置和固定座、核潛艇高壓冷卻器用不銹鋼閥體、炮彈、槍彈等,都是鍛壓產品。寧波鍛造除鋼鍛件以外,還用其它材料制造武器。鍛件在石油化工設備中有著廣泛的應用。如球形儲罐的人孔、法蘭,換熱器所需的各種管板、對焊法蘭催化裂化反應器的整鍛筒體(壓力容器),加氫反應器所用的筒節,化肥設備所需的頂蓋、底蓋、封頭等均是鍛件。
模鍛件拔長時的變形特點:模鍛件拔長時坯料變形情況與鐓粗變形有某些相似之處,它是兩端有不變形金屬的鐓粗。鍛造拔長時,關注的是拔長速度和拔長對鍛件質量的影響。供應鍛造送進量的大小,除影響生產率外,海影響鍛件質量當送進量太小,而坯料厚度又比較大,會出現鍛不透的現象,坯料內變形小而產生軸向拉應力,有可能導致模鍛件內產生裂紋。送進量過大又會產生外部橫向裂紋和內縱向裂紋。所以,送進量還需要根據坯料厚度來考慮。寧波鍛造壓下量是指變形前后坯料厚度之差,每次錘擊的壓下量不宜過大一般壓后斷面的寬高比應小于2至2.5倍,否則反轉90度在鍛壓二次時就會生產彎曲以致形成折疊。拔長時模鍛件坯料溫度適中、均勻。
對于易受循環應力影響的各種零件,為了進一步提高其抗蠕變、抗疲勞性能、剛性、塑性、強度,降低零件的自身重量,一般選擇鍛件為零件提供毛坯。在模鍛件的生產過程中,受到各種因素的影響,時常會發生各類不同程度的缺陷問題,其中常見的是鍛造折疊問題。鍛造折疊發生的主要原因在于,模鍛件鍛造過程中過氧化表層的金屬相互匯合,且其折疊的深度通常存在一定的差異。供應鍛造如果折疊缺陷發生在機加工面且深度較淺,則可以利用切削加工進行處理;如果折疊缺陷發生在非加工面上且深度較大,則其會對于零件的性能產生十分嚴重的影響,因而屬于一種必須要避免的鍛造缺陷。寧波鍛造裂紋表象和鍛造折疊現象的表現較為相似,但其性質存在較大的差異,折疊屬于非擴展性缺陷的一種,而裂紋則屬于擴展性缺陷的一種。
熱模鍛壓力機采用整體床身或有預應力的框架式機身,通過曲柄連桿機構使滑塊往復運動進行模鍛。供應鍛造熱模鍛壓力機滑塊運動準確,模具有導向裝置(鍛模的上模固定在滑塊上),分為預成形、預鍛、終鍛等工步, 每個工步金屬變形均為一次行程完成,變形較均勻且生產效率高;有頂出機構,鍛件的模鍛斜度可較小,且可直立鐓鍛“頭桿形”鍛件;鍛造力是壓力而非沖擊力,有利于提高金屬塑性。寧波鍛造它具有剛性好、鍛件精度高、能安排多模膛模鍛和一模多件、滑塊行程一定、速度低、操作簡單并容易實現自動化生產等特點。但由于熱模鍛壓力機的滑塊行程和速度固定,故不適于拔長和滾壓工步,且設備和模具復雜、造價高,僅適用于大批、大量生產。
表面裂紋多發生在軋制棒材和鍛制棒材上,一般呈直線形狀,和軋制或鍛造的主變形方向一致。鍛造造成這種缺陷的原因很多,例如鋼錠內的皮下氣泡在軋制時一面沿變形方向伸長,一面暴露到表面上和向內部深處發展。又如在軋制時,坯料的表面如被劃傷,冷卻時將造成應力集中,從而可能沿劃痕開裂等等。寧波鍛造這種裂紋若在鍛造前不去掉,鍛造時便可能擴展引起鍛件裂紋。折疊形成的原因是當金屬坯料在軋制過程中,由于軋輥上的型槽定徑不正確,或因型槽磨損面產生的毛刺在軋制時被卷入,形成和材料表面成一定傾角的折縫。對鋼材,折縫內有氧化鐵夾雜,四周有脫碳。折疊若在鍛造前不去掉,可能引起鍛件折疊或開裂。